Correlative Light and Electron Microscopy

Kristian Wadel

FEI Life Sciences

3.88 Å structure of Cytoplasmic Polyhedrosis virus by cryoelectron microscopy

Courtesy of Xuekui Yu, Lei Jin & Z. Hong Zhou, University of California, Los Angeles, USA **Cellular Biology Solutions** Discover life's cellular architecture in 3D

Volume rendering of the threedimensional architecture of a dividing yeast cell

Courtesy of Sriram Subramaniam, National Institutes of Health, Bethesda, USA

Tissue Biology Solutions Connect life's ultrastructure to the mesoscopic scale

Mouse intestine epithelial tissue imaged $50 \times 50 \times 10$ micron using a pixel size of 25 nm and section thickness of 40 nm

Courtesy of Paul Matsudaira, Dept of Biological Sciences, National University of Singapore

Motivation for CLEM

Light Microscopy

- Dynamics (e.g. live samples)
- Fluorescent probes/labels
- Limited resolution
- Large Field of View

Electron Microscopy

- Embedded/Frozen samples
- 2D/3D structural imaging
- High resolution
- Small Field of View

The importance of scale

Top image: Courtesy of D. McCarthy, University College London Middle and bottom: Courtesy of J. Mahamid, J. Plitzko and W. Baumeister, MPI for Biochemistry

Sample preparation workflows

Two approaches for CLEM

Sequential CLEM: flexibility in LM imaging and EM labeling and staining

Integrated CLEM: easier imaging and navigation, maximum sample protection

Solutions for CLEM from FEI

iCorr

• Integrated CLEM on dual-modality TEM

CorrSight

Dedicated light-microscopy system for sequental CLEM workflow

MAPS & Amira

- MAPS: Unified software interface for navigation and acquisition on LM & SEM/SDB & TEM soon
- Amira: Visualize and register 3D LM & EM data

chnoline

iCorr

iCorr- intuitive navigation in correlative workflow

- Optimal navigation tool, fully integrated in the TEM
- Special 15x 0.5 NA objective
- Maximum sample protection, no transfer of samples between instruments
- Instant image overlay and scaling of optical and electron microscopy data

Courtesy of M. Karreman (EMBL) and E. van Donselaar (University Utrecht)

iCorr: Immunolabeling

iCorr: GFP labeling

Courtesy of Lucy Collinson and Christopher Peddie Francis Crick Institute, London, UK GFP-coupled Protein Kinase C (PKC) in Hela cells

CorrSight & MAPS

CorrSight: microscope, sample prep and navigation tool

Unique modular concept:

- From wide-field fluorescence to spinning disk confocal depending on the need
- Immobile sample stage allowing complex sample environments
- Easy exchange of sample environments for different experiments

MAPS: A unified software interface for CLEM

- MAPS bridges the CorrSight and SEM/SDBs
- Makes navigation and image correlation fast and intuitive
- Provides tiling and stitching
- Open software platform can import and correlate any image
- Will be available for TEMs as well

Prescreening of EM samples

Experimental steps

Grow cells/tissue with fluorescent label

Embedding sectioning

LM imaging to Localize ROIs (CorrSight screen)

EM acquisition on ROIs (SDB/SEM/VS)

Correlative sample holders for automated fiducial-based correlation

Automated scanning of multiple samples to identify promising areas

- Sample holders directly compatible with CorrSight and SEMs
- Available for a variety of sample formats
 - ITO slides
 - TEM grids

 Fiducials for automated correlation

Automatic fiducial-based alignment

LM & EM data acquisition and correlation using MAPS

STEM imaging of astrocytes in Tokuyasuprepared brain sections

Data courtesy of Celine Loussert-Fonta & Bruno Humbel

UNIL | Deliversite de Lausanne HEC Lausanne

From live-cell imaging to 3D ultrastructure

Experimental steps

Cell culture ibidi μ -slides

LM imaging to identify areas of interest; in-situ fixation, staining, embedding

LM/EM with MAPS 3D serial sections acquisition on area of interest wit SDB/SEM/VS

Reconstruction & visualization of 3D serial section dataset with AMIRA

CorrSight Live

Sample environment

- Perfusion
- Heating
- CO₂ incubation

Microfluidic chamber

- Open wells allowing easy handling of different samples
- Closed by foil for the experiment to allow controlled closed perfusion
- **Optical quality bottom** (170 µm thickness)
- Grid coordinate system imprinted on the bottom

CorrSight Live: imaging and fixation of MCF-7 adherent breast cancer cells

Live cell imaging and µ-fluidics module

MAPS tiling/stitching large area overview – transmitted light and fluorescence microscopy

Area of interest identified by fluorescence microscopy

fixation, staining, resin-embedding directly on µFluidics module

Courtesy of S. Kwon and Claudia López

OHSU: Sample preparation workflow

Cell fixation, imaging, post-fixation, and staining protocol

- 1- Cells are fixed in 4% Paraformaldehyde in PBS (pH 7) for 30'. Cultured cells are then washed with PBS (pH 7) using the same microfluidic flow rate.
- 2- Cells are then washed with PBS (pH 7) using the same microfluidic flow rate.
- 3- Cells are post-fixed in Karnovsky's fixative (2.5% Paraformaldehyde, 2.5% Gluteraldehyde in 100 mM cacodylate buffer pH 7.2) for 30' at room temperature.
- 4- Cells are then washed with 100 mM cacodylate buffer (pH 7.2).
- 5- Cells are then stained with 2% tannic acid in 100 mM cacodylate buffer pH 7.2 for 30' at room temperature.
- 6- Cells are then washed with 100 mM cacodylate buffer (pH 7.2).
- 7- Cells are then stained with 2% Osmium tetroxide in 100 mM cacodylate buffer pH 7.2 with 0.8% K3Fe(Cn)6 (potassium ferocyanide) for 30' at room temperature.
- 8- Cells are then washed with dH2O.
- 9- Cells are then stained with 7% uranyl acetate in dH20 for 30' at room temperature
- 10- Cells are then washed with dH2O.
- 11- Cells are then dehydrated by incubating with solutions of 25% acetone, 50% acetone, 95% acetone, and 100% acetone, each for 10' at room temperature. The final 100% step should be done twice.
- 12- Cells are then incubated with a 1:1 EPON:acetone solution at room temperature overnight.
- 13- Cells are then incubated with 100% EPON (${\sim}50~\mu l$ per well) overnight at room temperature.
- 14- After the overnight incubation, the EPON was exchanged for fresh solution and the microslide is incubated at 60° C overnight.
- 15- After complete polymerization of the microslide well, each well can be ejected from the slide by bending the slide and pushing the polymerized well from underneath.
- 16- Each polymerized well "puck" can now be processed for SEM imaging.

3D electron microscopy: FIB-SEM/DualBeam

- Using focused ion beam for automated sectioning and imaging of the freshly cut block face
- Walk-away acquisition of volumes (200 μm³)
- Curtaining artifacts on block face
- Best axial resolution (3nm)
- Lateral resolution limits set by image acquisition times

3D CLEM on plastic-embedded MCF-7 adherent breast cancer cells

echnolmfo

MCF-7 adherent breast cancer cells

Time Lapse Imaging Her2-GFP

> Courtesy of S. Kwon and Claudia López

Further reading...

NATURE METHODS | VOL.12 NO.6 | JUNE 2015

REVIEW

Correlated light and electron microscopy: ultrastructure lights up!

Pascal de Boer¹, Jacob P Hoogenboom² & Ben N G Giepmans¹

Selected volume tomography (cryo-electron tomography)

Cryo-electron-tomography workflow

Adapted from Rigort et al., Methods in Cell Biology Vol. 111 (2012)

Experimental steps

🐝 FEI 🖱

Cryo-FIB milling of lamella

Define milling area (ion beam image)

A lamella of 80-350 nm supported by the remains of the cell is created

Resulting lamella (ion beam image)

Courtesy of W. Baumeister and J. Plitzko

Max Planck Institute of Biochemistry Martinsried, Germany

Cryo-FIB milling

Rigort et al., Proc Natl Acad Sci USA (2012) Mar 20;109(12):4449-54.

Explore. Discover. Resolve.

Cryo-light microscopy

CorrSight cryo

- No LN₂ pump needed
- Up to **2 grid positions** in a fixed geometry
- Compatible with 40x/0.9 NA objective
- No condensation / frost

FFI

- Samples pre-mounted on shuttles for quick and safe exchange
- Works with all CorrSight imaging modes: transmission, widefield fluorescence, SI, spinning disk confocal

Imaging of HeLa cells: from cryo-light microscopy to cryo-TEM, through cryo-FIB-milling

Cryo-ET of FIB-milled lamella

Courtesy of J. Plitzko

Max Planck Institute of Biochemistry Martinsried, Germany

Image registration of 3D CLEM data using Amira

Intravital 2-photon to high-resolution EM

Using registered volumes for targeted tomography

Segmentation of collagen as basis for landmark registration

Karreman *et al*, Plos One, 2014 EMBL

Intravital imaging to electron tomography

Karreman *et al,* Plos One, 2014

European Molecular Biology Laboratory

